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We calculate the upper critical field Hc2�T� due to the orbital pair breaking in disordered superconductors
without inversion symmetry. Differences from the usual centrosymmetric case are highlighted. The linearized
gap equations in magnetic field, with the singlet and triplet pairing channels mixed by impurity scattering, are
solved exactly for a cubic crystal.
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I. INTRODUCTION

Recently, superconductivity has been discovered in a
number of compounds lacking inversion symmetry, such as
CePt3Si �Ref. 1�, UIr �Ref. 2�, CeRhSi3 �Ref. 3�, CeIrSi3
�Ref. 4�, Li2�Pd3−xPtx�B �Ref. 5�, and many others. Much of
the theoretical work in the field has focused on searching for
the features which are specific to noncentrosymmetric sys-
tems. These include the magnetoelectric effect,6–8 a large
residual spin susceptibility and reduced paramagnetic
limiting,7,9–12 and various nonuniform superconducting
states.13–16

In this paper we study the effects of the absence of inver-
sion symmetry on the upper critical field Hc2�T� at arbitrary
temperature. We assume the pairing to be of the Bardeen-
Cooper-Schrieffer �BCS� type and include only the orbital
pair breaking. The main qualitative difference from the cen-
trosymmetric case is that the spin-orbit �SO� coupling of
electrons with the crystal lattice changes the nature of single-
electron states, lifting spin degeneracy of the energy bands.
Then even scalar impurities can mix the singlet and triplet
channels in the Cooper pair propagator, thus making the
theory considerably more complicated. The derivation of the
Hc2 equations for arbitrary noncentrosymmetric crystal sym-
metry is presented in Sec. II below, with some of the tech-
nical details relegated to Appendixes A and B. In Sec. III, we
apply the general equations to a cubic superconductor with
the point group G=O. Assuming that both the band structure
and the SO coupling are fully isotropic, we are able to ex-
actly solve the coupled equations for the singlet and triplet
channels, obtain the Hc2 equation in a closed form, and de-
rive analytical expressions for the upper critical field in the
“dirty” limit. This isotropic model clearly shows the devia-
tions from the usual, i.e., centrosymmetric BCS, case, for
which the upper critical field was calculated in the classic
papers by Helfand, Werthamer, and Hohenberg in the 1960s
�Refs. 17 and 18�. Section IV contains a discussion of our
results.

The magnetic phase diagram of noncentrosymmetric su-
perconductors has been discussed previously in several
works. The upper critical field for a clean three-dimensional
Rashba superconductor was calculated in Ref. 15 while the
effects of disorder in the Ginzburg-Landau regime were stud-
ied in Ref. 19. Two-dimensional case, in which only the
paramagnetic pair breaking is present, was considered in Ref.

20. Recently, Hc2 at all temperatures was calculated in Ref.
21, neglecting the impurity-induced triplet channel in the
pair propagator in the limit when the SO band splitting is
small compared with the Fermi energy. In this paper, we
relax this last condition and include both the singlet and
triplet channels. Throughout the paper we use the units in
which �=kB=1.

II. DERIVATION OF Hc2 EQUATIONS: GENERAL CASE

Let us consider a noncentrosymmetric superconductor
with the Hamiltonian given by H=H0+Himp+Hint. The first
term,

H0 = �
k

��0�k���� + ��k�����ak�
† ak�, �1�

describes noninteracting electrons in the crystal lattice poten-
tial, where � ,�= ↑ ,↓ label spin projections, �0�k� is the qua-
siparticle energy counted from �F, and �̂ are the Pauli ma-
trices. In Eq. �1� and everywhere below, summation over
repeated spin indices is implied while summations over spa-
tial and band indices are always shown explicitly. The sec-
ond term, with ��k�=−��−k�, describes a Rashba-type �or
antisymmetric� SO coupling of electrons with the crystal
lattice.22 If a usual SO coupling �which is present even in
centrosymmetric crystals� is included, then � , � in Eq. �1�
should be interpreted as pseudospin projections. Diagonal-
ization of H0 yields two nondegenerate bands labeled by the
helicity �=�:

	��k� = �0�k� + ����k�� . �2�

The Fermi velocities in the two bands are given by v��k�
=�	� /�k. The Fermi-level densities of states are defined in
the usual way by N�=V−1�k��	��k�� �V is the system vol-
ume�, and the difference between N+ and N− is characterized
by a parameter

� =
N+ − N−

N+ + N−
. �3�

If the SO coupling is small compared with the Fermi energy,
then ��O�ESO /�F�, where ESO=2 maxk���k�� is a measure
of the SO band splitting.

Scattering of electrons at isotropic scalar impurities is in-
troduced according to
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Himp =� d3rU�r�
�
†�r�
��r� . �4�

The random potential U�r� has zero mean and is character-
ized by the correlator 	U�r�U�r��
=nimpU0

2��r−r��, where
nimp is the impurity concentration and U0 has the meaning of
the strength of an individual pointlike impurity. The field
operators are given by 
��r�=V−1/2�keikrak�.

Neglecting the paramagnetic pair breaking, which is a
good assumption in many bulk noncentrosymmetric materi-
als, the effect of a uniform external magnetic field H is de-
scribed by the Peierls substitution23

ĥ = �0�K� + ��K��̂ + U�r� , �5�

where K=−i� + �e /c�A�r� and e is the absolute value of the
electron charge.

We describe the pairing interaction by a BCS-like Hamil-
tonian:

Hint = − V� d3r
↑
†�r�
↓

†�r�
↓�r�
↑�r� , �6�

where V�0 is the coupling constant. In this model, the su-
perconducting order parameter is represented by a single
complex function ��r� �see Ref. 24�. The critical temperature
at a given field, or inversely the upper critical field Hc2�T� at
a given temperature, is found from the condition that the
linearized gap equation,

� 1

V
− T�

n
�X̂�n����r� = 0, �7�

has a nontrivial solution. Here n= �2n+1��T is the fermi-
onic Matsubara frequency �the prime in the second term
means that the summation is limited to �n��c, where c is

the BCS frequency cutoff� and the operator X̂�n� is defined
by the following kernel:

X�r,r�;n� =
1

2
	tr ĝ†Ĝ�r,r�;n�ĝĜT�r,r�;− n�
imp, �8�

where ĝ= i�̂2. The angular brackets denote the impurity av-

eraging, and Ĝ�r ,r� ;n� is the Matsubara Green’s functions
of electrons in the normal state, which satisfies the equation

�in − ĥ�Ĝ�r,r�;n� = ��r − r�� , �9�

where the single-particle Hamiltonian ĥ is given by expres-
sion �5�.

At zero field, Eq. �9� yields the following expression for
the average Green’s function:

Ĝ0�k,n� = �
�=�
�̂��k�G��k,n� , �10�

where

�̂��k� =
1 + ��̂�k��̂

2
�11�

are the band projection operators ��̂=� / ����, and

G��k,n� =
1

in − 	��k� + i� sgn n
�12�

are the electron Green’s functions in the band representation.
Here 	��k� is the quasiparticle dispersion in the �th band �see
Eq. �2��, �=1 /2� is the elastic-scattering rate, �
= �2�nimpU0

2NF�−1 is the electron mean-free time due to im-
purities, and

NF =
N+ + N−

2
. �13�

The impurity average of the product of two Green’s func-
tions in Eq. �8� can be represented graphically by the ladder
diagrams �see Fig. 1�. We assume the disorder that is suffi-
ciently weak for the diagrams with crossed impurity lines to
be negligible �see Ref. 25�. In order to solve Eq. �7� at non-
zero field, we introduce an impurity-renormalized gap func-

tion D̂�r ,n�, which is a matrix in the spin space satisfying
the following integral equation

D̂�r,n� = ��r�ĝ +
1

2
nimpU0

2ĝ� d3r� tr ĝ†Ĝ�r,r�;n�

�D̂�r�,n�ĜT�r,r�;− n�

+
1

2
nimpU0

2ĝ� d3r� tr ĝ†Ĝ�r,r�;n�

�D̂�r�,n�ĜT�r,r�;− n� , �14�

where Ĝ�r ,r� ;n� are the disorder-averaged solutions of Eq.
�9�. The above equation can be easily derived from the im-
purity ladder diagrams in Fig. 1 by representing each “rung”
of the ladder as a sum of spin-singlet and spin-triplet terms:

nimpU0
2������ =

1

2
nimpU0

2g��g��
† +

1

2
nimpU0

2g��g��
† , �15�

where ĝ= i�̂�̂2.
Seeking solution of Eq. �14� in the form

D̂�r,n� = d0�r,n�ĝ + d�r,n�ĝ , �16�

we obtain a system of four integral equations for da�r ,n�,
where a=0,1 ,2 ,3:

�
b=0

3

��ab − �Ŷab�n��db�r,n� = ��r��a0. �17�

Here the operators Ŷab�n� are defined by the kernels

δα

β γ

g +
β

α

γ

δ

µ ν

g + ...
ρ σ

+g g+

FIG. 1. Impurity ladder diagrams in the Cooper channel. Lines
with arrows correspond to the average Green’s functions of elec-
trons, ĝ= i�̂2, and the impurity �dashed� lines are defined in the text
�see Eq. �15��.
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Yab�r,r�;n� =
1

2�NF
tr ĝa

†Ĝ�r,r�;n�ĝbĜT�r,r�;− n� ,

�18�

with ĝ0= ĝ. We see that, in addition to the spin-singlet com-
ponent d0 of the impurity-renormalized gap function, impu-
rity scattering can also induce a nonzero spin-triplet compo-
nent d. The linearized gap equation �see Eq. �7�� contains
only the former: Using Eq. �17�, we obtain

1

NFV
��r� − �T�

n
�
d0�r,n� − ��r�

�
= 0. �19�

It is easy to see that the triplet component does not appear in
the centrosymmetric case. Indeed, in the absence of the Zee-
man interaction, the spin structure of the Green’s function is
trivial: G���r ,r� ;n�=���G�r ,r� ;n�. Then it follows from

Eq. �18� that Ŷab�n�=�abŶ�n�; therefore d0= �1−�Ŷ�−1�
and d=0.

It should also be noted that, due to our choice of the
pairing Hamiltonian �Eq. �6��, the order parameter has only
the singlet component ��r�. In general, the pairing interac-
tion contains not only the singlet but also the triplet as well
as the mixed channels,24 resulting in the order parameter
having both the singlet and triplet components, which are
mixed even in the absence of impurities. In this case, the gap
equations become more complicated.

The next step is to find the spectrum of the operators

Ŷab�n�. The orbital effect of the magnetic field is described
by a phase factor in the average electron Green’s function:

Ĝ�r ,r� ;n�= Ĝ0�r−r� ;n�ei��r,r��, where Ĝ0 is the average
Green’s function in the normal state at zero field, ��r ,r��
= �e /c�r

r�A�r�dr, and the integration is performed along a
straight line connecting r and r� �Ref. 25�. The “phase-only”
approximation is legitimate if the temperature is not very low
so that the Landau-level quantization can be neglected. Us-
ing the identity e2i��r,r����r��=e−i�r−r��D��r�, where D=−i�
+ �2e /c�A, we obtain

Ŷab�n� = Yab�q,n��q→D, �20�

where

Yab�q,n� =
1

2�NF
� d3k

�2��3 tr ĝa
†Ĝ0�k + q,n�ĝbĜ0

T�− k,− n� .

�21�

Substituting here the Green’s function �10� and calculating
the spin traces, we obtain for the singlet-singlet term

Y00�q,n� =
1

2�
�

��� 1

�n� + � + iv��k�q sgn n/2��,

�22�

where

�� =
N�
NF

= 1� � �23�

are the fractional densities of states in the two bands and
	�. . .�
� denotes the Fermi-surface averaging in the �th band.
Similarly, for the singlet-triplet mixing terms, we obtain

Y0i�q,n� = Yi0�q,n�

=
1

2�
�

���� �̂i�k�
�n� + � + iv��k�q sgn n/2��

�24�

We see that the mixing occurs due to the SO coupling and
vanishes at �→0, when �+=�−=1 and v+=v−=vF. Finally,
the triplet-triplet terms can be represented as follows:

Yij�q,n� = Yij
�1��q,n� + Yij

�2��q,n� , �25�

where

Yij
�1��q,n� =

1

2�
�

��� �̂i�k��̂ j�k�
�n� + � + iv��k�q sgn n/2��

�26�

and

Yij
�2��q,n� =

1

2�NF
�
�
� d3k

�2��3 ��ij − �̂i�̂ j − i�eijl�̂l�

�G��k + q,n�G−��− k,− n� . �27�

The singlet impurity scattering channel, which is described
by the first term in expression �15�, causes only the scattering
of intraband pairs between the bands. In contrast, the triplet
impurity scattering can create also interband pairs, which are
described by Yij

�2�. It is easy to show that if the SO band
splitting exceeds both c and � then the second �interband�
term in Eq. �25� is smaller than the first �intraband� one �see
Appendix A�. Note that in real materials, ESO ranges from
tens to hundreds of meV �see Ref. 26 for CePt3Si, and Ref.
27 for Li2Pd3B and Li2Pt3B�. On the other hand, there is still
considerable uncertainty as to the values of c, especially in
heavy-fermion compounds, such as CePt3Si. The typical en-
ergy of phonons responsible for the pairing in Li2Pd3B was
estimated in Ref. 27 to be 20 meV while the SO band split-
ting is 30 meV �reaching 200 meV in Li2Pt3B�.

The critical temperature of the phase transition into a uni-
form superconducting state at zero field can be found by
setting q=0 in the above expressions. According to Eq. �24�,
the singlet and triplet channels are decoupled. Then it fol-
lows from Eqs. �22� and �17� that d0�n�= �1+� / �n���.
Substituting this into Eq. �19�, we obtain

1

NFV
− �T�

n
�

1

�n�
= 0, �28�

which yields the superconducting critical temperature:
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Tc0 =
2eC

�
ce

−1/NFV, �29�

where C�0.577 is Euler’s constant. We see that there is an
analog of Anderson’s theorem in noncentrosymmetric super-
conductors with a BCS-contact pairing interaction: the zero-
field critical temperature is not affected by scalar disorder.19

In the presence of magnetic field, neglecting the interband
contributions to the triplet pair propagator, we obtain

Yab�q,n� =
1

2�
�

��� ��,a�k���,b�k�
�n� + � + iv��k�q sgn n/2��,

�30�

where

��,a�k� = �1, a = 0,

��̂a�k� , a = 1,2,3.
� �31�

Next we use in Eq. �30� the identity x−1=0
�du e−xu, and

make the substitution q→D �see Eq. �20�� in the exponent to

represent Ŷab�n� as a differential operator of infinite order:

Ŷab�n� =
1

2
�

0

�

du e−u��n�+���
�

��Ô�
ab, �32�

where

Ô�
ab = 	��,a�k���,b�k�e−iuv��k�D sgn n/2
�. �33�

In order to solve Eq. �17� with the operators Ŷab�n�
given by expression �32�, we follow the procedure described
in Ref. 17. We choose the z axis along the external field, so
that H=Hẑ and introduce the operators

a� = �H
Dx� iDy

2
, a3 = �HDz, �34�

where �H=�c /eH is the magnetic length. It is easy to check
that a+=a−

† and �a− ,a+�=1; therefore a� have the meaning of
the raising and lowering operators while a3=a3

† commutes
with both of them: �a3 ,a��=0. It is convenient to expand
both the order parameter � and the impurity-renormalized
gap functions da in the basis of Landau levels �N , p
, which
satisfy

a+�N,p
 = �N + 1�N + 1,p
, �35�

a−�N,p
 = �N�N − 1,p


a3�N,p
 = p�N,p
 ,

where N=0,1 , . . ., and p is a real number. We have

��r� = �
N,p
�N,p	r�N,p
, da�r,n� = �

N,p
dN,p

a �n�	r�N,p
 .

�36�

According to Eq. �17�, the expansion coefficients satisfy the
following algebraic equations:

�
N�,p�,b

��ab�NN��pp� − �	N,p�Ŷab�n��N�,p�
�dN�,p�
b �n�

= �a0�N,p. �37�

Substituting the solutions of these equations into

1

NFV
�N,p − �T�

n
�
dN,p

0 �n� − �N,p

�
= 0 �38�

�see Eq. �19�� and setting the determinant of the resulting
linear equations for �N,p to zero, one arrives at an equation
for the upper critical field.

III. CUBIC CASE

In the general case, i.e., for arbitrary crystal symmetry
and electronic band structure, the procedure outlined in the
previous section does not yield an equation for Hc2�T� in a
closed form since all the Landau levels are coupled and one
has to diagonalize infinite matrices. In order to make
progress, we focus on the case of a noncentrosymmetric cu-
bic superconductor with the point group G=O, which de-
scribes, for instance, the crystal symmetry of
Li2�Pd1−x ,Ptx�3B. The simplest expression for the SO cou-
pling compatible with all symmetry requirements has the fol-
lowing form:

��k� = �0k , �39�

where �0 is a constant. We assume a parabolic band: �0�k�
=k2 /2m�−�F, where m� is the effective mass, �F=k0

2 /2m�,
and k0 is the Fermi wave vector in the absence of the SO
coupling. The band dispersion functions are given by

	��k� =
k2 − k0

2

2m�
+ ���0�k , �40�

so that the SO band splitting is isotropic and given by ESO
=2��0�k0. It is convenient to characterize the SO coupling
strength by a dimensionless parameter �=ESO /4�F. While
the two Fermi surfaces have different radii, kF,�=k0��1+�2

−���, the Fermi velocities are the same: v��k�=vFk̂, where
vF=k0

�1+�2 /m�. For the parameter �, which characterizes
the difference between the band densities of states �see Eq.
�3��, we have ���=2��1+�2 / �1+2�2�. We assume that

�c� ���� 1, �41�

where �c=max�c ,�� /�F�1. While the first inequality is
equivalent to the condition ESO�max�c ,��, which ensures
the smallness of the interband contribution to the Cooper
impurity ladder �see Appendix A�, the second one is always
satisfied with ���→1 corresponding to the rather unrealistic
limit of extremely strong SO coupling, �→�.

In order to solve the gap equations, we make a change of
variables in the triplet component:

d��r,n� =
d1�r,n�� id2�r,n�

�2
.

Then, Eq. �17� takes the following form:
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�
1 − �Ŷ00 − �Ŷ03 − �Ŷ0− − �Ŷ0+

− �Ŷ03 1 − �Ŷ33 − �Ŷ3− − �Ŷ3+

− �Ŷ0+ − �Ŷ3+ 1 − �Ẑ − �Ẑ+

− �Ŷ0− − �Ŷ3− − �Ẑ− 1 − �Ẑ
��d0

d3

d+

d−
� =��000� ,

�42�

where

Ŷ0� =
Ŷ01� iŶ02

�2
, Ŷ3� =

Ŷ13� iŶ23

�2
, Ẑ =

Ŷ11 + Ŷ22

2
,

Ẑ� =
Ŷ11� 2iŶ12 − Ŷ22

2
,

with Ŷab= Ŷba given by Eq. �32�.
According to Sec. II, one has to know the matrix elements

of the operators Ŷab�n� in the basis of the Landau levels
�N , p
. After some straightforward algebra �see Appendix B�,
we obtain the following expressions for the nonzero matrix
elements:

	N,p�Ŷ00�n��N,p
 = yN,p
00 �n� ,

	N,p�Ŷ03�n��N,p
 = yN,p
03 �n� ,

	N,p�Ŷ33�n��N,p
 = yN,p
33 �n� ,

	N,p�Ẑ�n��N,p
 = zN,p�n� ,

where

yN,p
00 �n� = �

0

�

du e−u��n�+���
0

1

ds cos�pvs�e−v2�1−s2�/2

�LN�v2�1 − s2�� , �43�

yN,p
03 �n� = − i��

0

�

du e−u��n�+���
0

1

ds s sin�pvs�e−v2�1−s2�/2

�LN�v2�1 − s2�� , �44�

yN,p
33 �n� = �

0

�

du e−u��n�+���
0

1

ds s2 cos�pvs�e−v2�1−s2�/2

�LN�v2�1 − s2�� , �45�

zN,p�n� =
1

2
�

0

�

du e−u��n�+���
0

1

ds�1 − s2�

�cos�pvs�e−v2�1−s2�/2LN�v2�1 − s2�� , �46�

v= �vF sgn n /2�H�u, and LN�x� are the Laguerre polynomi-
als of degree N. Similarly, we obtain

	N,p�Ŷ0−�n��N + 1,p
 = 	N + 1,p�Ŷ0+�n��N,p
 = ỹN,p
0 �n� ,

	N,p�Ŷ3−�n��N + 1,p
 = 	N + 1,p�Ŷ3+�n��N,p
 = ỹN,p
3 �n� ,

	N,p�Ẑ−�n��N + 2,p
 = 	N + 2,p�Ẑ+�n��N,p
 = z̃N,p�n� ,

where

ỹN,p
0 �n� = − i�

1
�2�N + 1�

�
0

�

du e−u��n�+���
0

1

ds v

��1 − s2�cos�pvs�e−v2�1−s2�/2LN
�1��v2�1 − s2�� ,

�47�

ỹN,p
3 �n� = −

1
�2�N + 1�

�
0

�

du e−u��n�+���
0

1

ds vs

��1 − s2�sin�pvs�e−v2�1−s2�/2LN
�1��v2�1 − s2�� ,

�48�

z̃N,p�n� = −
1

2��N + 1��N + 2�
�

0

�

du e−u��n�+���
0

1

ds v2

��1 − s2�2cos�pvs�e−v2�1−s2�/2LN
�2��v2�1 − s2�� ,

�49�

and LN
����x� are the generalized Laguerre polynomials.

It follows from the above expressions that the Landau
levels are decoupled, and for ��r�=�	r �N , p
 �� is a con-
stant�, the solution of Eq. �42� has the following form:

�
d0�r,n�
d3�r,n�
d+�r,n�
d−�r,n�

� =�
dN,p

0 �n�	r�N,p

dN,p

3 �n�	r�N,p

dN,p

+ �n�	r�N + 1,p

dN,p

− �n�	r�N − 1,p

� . �50�

For given N and p, the coefficients are found from the equa-
tions

�
b=0,3,�

Mab�N,p;n�dN,p
b �n� = �a0� , �51�

where
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M̂�N,p;n� =�
1 − �yN,p

00 − �yN,p
03 − �ỹN,p

0 − �ỹN−1,p
0

− �yN,p
03 1 − �yN,p

33 − �ỹN,p
3 − �ỹN−1,p

3

− �ỹN,p
0 − �ỹN,p

3 1 − �zN+1,p − �z̃N−1,p

− �ỹN−1,p
0 − �ỹN−1,p

3 − �z̃N−1,p 1 − �zN−1,p

� . �52�

Substituting the solution of Eq. �51� in Eq. �38�, and using
Eqs. �28� and �29� to eliminate both the frequency cutoff and
the coupling constant, we obtain an equation implicitly relat-
ing the magnetic field and the transition temperature at given
N and p:

ln
Tc0

T
= �T�

n
� 1

�n�
−

�M̂−1�N,p;n��00 − 1

�
� . �53�

The upper critical field Hc2�T� is obtained by maximizing the
solution of this equation with respect to both N and p.

Note that the matrix elements of M̂ which are responsible
for the singlet-triplet mixing, i.e., yN,p

03 , ỹN,p
0 , and ỹN−1,p

0 , are
all proportional to � �see Eqs. �44� and �47��. Therefore, at
����1 the singlet and triplet channels are effectively decou-
pled. Neglecting the corrections of the order of �2, we obtain

from Eq. �51� that �M̂−1�N , p ;n��00= �1−�yN,p
00 �−1. Substi-

tuting this into Eq. �53�, we recover the Helfand-Werthamer
expressions17 with the maximum critical field corresponding
to N= p=0 at all temperatures. Thus, in the weak SO cou-
pling limit the absence of inversion symmetry does not bring
about any new features in Hc2�T�, compared with the cen-
trosymmetric case �as long as the paramagnetic pair breaking
is not included, see Ref. 21�.

“Dirty” limit at N=0, p=0

At arbitrary magnitude of the SO band splitting, the
singlet-triplet mixing makes the Hc2 equation in noncen-
trosymmetric superconductors considerably more cumber-
some than in the Helfand-Werthamer problem even in our
“minimal” isotropic model. It is even possible that, at some
values of the parameters, the maximum critical field is
achieved for N�0 and p�0, the latter corresponding to a
disorder-induced modulation of the order parameter along
the applied field. Leaving investigation of these exotic pos-
sibilities to future work, here we just consider the case N
= p=0. Then it follows from Eqs. �50� and �51� that d0,0

3

=d0,0
− =0, and �M̂−1�0,0 ;n��00= �1−�z1,0� / ��1−�y0,0

00 ��1
−�z1,0�−�2�ỹ0,0

0 �2�. It is convenient to introduce the reduced
temperature, magnetic field, and disorder:

t =
T

Tc0
, h =

2H

H0
, � =

�

�Tc0
,

where H0=�0 /�	0
2, �0=�c /e is the magnetic-flux quantum,

and 	0=vF /2�Tc0 is the superconducting coherence length.
In these notations, Eq. �53� yields the following equation for
the upper critical field hc2�t�:

ln
1

t
= 2�

n 0
� 1

2n + 1
− t

wn�1 − �pn� − ��2qn
2

�1 − �wn��1 − �pn� + �2�2qn
2� ,

�54�

where

wn�t,h� = �
0

�

d� e−̃n��
0

1

ds e−h�2�1−s2�/4,

pn�t,h� = �
0

�

d� e−̃n��
0

1

ds
1 − s2

2

��1 −
h

2
�2�1 − s2��e−h�2�1−s2�/4,

qn�t,h� = �
0

�

d� e−̃n��
0

1

ds�h

4
��1 − s2�e−h�2�1−s2�/4,

�55�

where ̃n= �2n+1�t+�.
In the clean limit, i.e., at �→0, or if the SO band splitting

is negligibly small, i.e., at �→0, one recovers from Eq. �54�
the Helfand-Werthamer equation for a centrosymmetric su-
perconductor. Thus the absence of inversion symmetry af-
fects the upper critical field only if disorder is present. One
can expect that the effect will be most pronounced in the
dirty limit, ��1. �Note that, according to Eq. �41�, the dis-
order strength should satisfy �� ��F /Tc0����.� We shall see
that in this limit hc2 scales as �, which allows one to use the
Taylor expansions of the exponentials in Eq. �55�:

wn�t,h� �
1

̃n
�1 −

h

3̃n
2� ,

pn�t,h� �
1

3̃n
�1 −

6h

5̃n
2� ,

qn�t,h� �
�h

3̃n
2 .

Using the fact that the main contribution to the Matsubara
sum in Eq. �54� comes from �2n+1�t��, we arrive at a
well-known universal equation, which describes the mag-
netic pair breaking in superconductors:28
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ln
1

t
=!�1

2
+
�

t
� −!�1

2
� , �56�

where !�x� is the digamma function, and

� =
2 + �2

12�
h �57�

characterizes the pair-breaker strength. Note that the corre-
sponding expression in the centrosymmetric case is different:
�CS=h /6� �Ref. 17�. Analytical expressions for the upper
critical field can be obtained in the weak-field limit near the
critical temperature:

hc2�t→1 =
24�

�2 + �2��2 �1 − t� , �58�

and also at low temperatures:

hc2�t=0 =
3e−C

2 + �2� . �59�

We see that the SO band splitting in the noncentrosymmetric
case enhances the orbital pair breaking.

IV. CONCLUSIONS

We have derived equations for the upper critical field in
noncentrosymmetric superconductors with the orbital pair
breaking. Although for a BCS-contact pairing interaction the
order parameter has just the singlet component, one has to
include also the triplet pairing channel in the gap equations
due to impurity scattering. In a cubic crystal �the point group
G=O�, in which both the electron dispersion and the SO
coupling are isotropic, the gap equations are shown to be
diagonal in the Landau-level basis with the singlet and triplet
channels still mixed together. For the order parameter corre-
sponding to the lowest Landau level without any modulation
along the applied field, we have obtained the Hc2 equation in
a closed form and solved it in the dirty limit, in which the
effects of the absence of inversion symmetry are expected to
be most pronounced. The effect on the upper critical field of
the singlet-triplet mixing, which is responsible for the devia-
tions from the Helfand-Werthamer theory, is found to be pro-
portional to �2.

Application of our theory to real noncentrosymmetric su-
perconductors of cubic symmetry, such as Li2�Pd3−xPtx�B, is
complicated by the fact that the Fermi surfaces as well as the
SO band splitting are strongly anisotropic. Using the maxi-
mum values of the SO band splitting from Ref. 27, one can
estimate the corrections to Hc2�T� due to the singlet-triplet
mixing to be of the order of several percent.
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APPENDIX A: INTERBAND VS INTRABAND
CONTRIBUTIONS

In this appendix, we estimate the relative magnitudes of
the intraband and interband contributions to the triplet pair

propagator �Eq. �25�� in the limit when the SO coupling is
strong compared with both the cut-off energy c and the
elastic-scattering rate �. Let us consider an isotropic band
with ��k�=�0k in a cubic crystal. Neglecting for simplicity
the differences between the densities of states and the Fermi
velocities in the two bands: �+=�−=1 and v+=v−=vF, and
setting q=0, we obtain from Eqs. �26� and �27�

Yij
�1��q = 0,n� =

	�̂i�̂ j
k̂

�n� + �
=

�ij

3��n� + ��
� Yintra�n��ij ,

and

Yij
�2��q = 0,n� =

1

2�
�
� �ij − �̂i�̂ j

�n� + � + i����sgn n
�

k̂

=
2�ij

3��n� + ���1 + r2�
� Yinter�n��ij ,

where r�n�=ESO /2��n�+��. Due to the BCS cutoff, the
maximum value of n is equal to c; therefore rmin
�ESO /max�c ,���1. From this it follows that

max
n

Yinter�n�
Yintra�n�

=
2

1 + rmin
2 � �max�c,��

ESO
�2

� 1.

Therefore the interband contribution is small compared with
the intraband one at all Matsubara frequencies.

APPENDIX B: CALCULATION OF ŠN ,p�Ŷab(�n)�N� ,p�‹

The operators Ŷab�n� are given by expression �32�. For a
spherical Fermi surface and ��k�=�0k, we obtain from Eq.
�33�

Ô�
ab =

1

2
�

0

�

d" sin "e−iva3 cos "

��
0

2� d#

2�
��

ab�",#�e−iv�e−i#a++ei#a−�sin ", �B1�

where v= �vF sign n /2�H�u, and ��
ab�" ,#�=��,a�k���,b�k�,

with ��,0�k�=1 and ��,i�k�=�k̂i for i=1,2 ,3 �see Eq. �31��.
Using the well-known operator identity eA+B=e−�A,B�/2eAeB,
which holds if the commutator of A and B is a c number, and
expanding the exponentials in powers of a�, we obtain

Ŷab�n� =
1

4�
�

���
0

�

du e−u��n�+���
0

�

d"

�sin "e−iva3 cos "e−�v2/2�sin2 "L̂�ab�"� , �B2�

where

L̂�ab�"� = �
n,m=0

�
�− iv sin "�n+m

n ! m!

���
0

2� d#

2�
��

ab�",#�ei�m−n�#�a+
na−

m. �B3�

Below we perform the detailed calculations for Ŷ00 and
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Ŷ0−= �Ŷ01− iŶ02� /�2. Other matrix elements can be consid-
ered in a similar fashion.

Ŷ00: Since ��
00�" ,#�=1, the # integral on the right-hand

side of Eq. �B3� is equal to �nm, and

L̂�00�"� = �
n=0

�
�− v2 sin2 "�n

�n!�2 a+
na−

n .

It is easy to show using Eq. �35� that a+
na−

n�N , p
= �N ! / �N
−n�!��N , p
 for n�N, and zero otherwise. Therefore,

L̂�00�"��N,p
 = �
n=0

N
N!

�n!�2�N − n�!
�− v2 sin2 "�n�N,p


= LN�v2 sin2 "��N,p
 ,

where LN�x� is the Laguerre polynomial of degree N. Substi-
tuting this into Eq. �B2�, using the fact that �++�−=2, and

introducing s=cos ", we obtain: 	N , p�Ŷ00�n��N , p

=yN,p

00 �n�, where yN,p
00 �n� is given by Eq. �43�.

Ŷ0−: Since ��
0−�" ,#�=� sin "e−i# /�2, one has m=n+1 on

the right-hand side of Eq. �B3�, and

L̂�0−�"� = �
sin "
�2

�
n=0

�
�− iv sin "�2n+1

n ! �n + 1�!
a+

na−
n+1.

Using a+
na−

n+1�N+1, p
=�N+1�N ! / �N−n�!��N , p
 �if n�N,
zero otherwise�, we obtain

L̂�0−�"��N + 1,p
 = − i�
v sin2 "

�2
�N + 1�

n=0

N
N!

�N − n�!

�
�− v2 sin2 "�n

n ! �n + 1�!
�N,p


= − i�
1

�2�N + 1�
v sin2 "LN

�1��v2 sin2 "��N,p
 ,

where LN
����x� are the generalized Laguerre polynomials �see

Ref. 29�

LN
����x� = �

n=0

N
�N + ��!
�N − n�!

�− x�n

n ! �n + ��!

�the ordinary Laguerre polynomials are recovered by setting
�=0�. Substituting this into Eq. �B2� and using �+−�−=2�,
we obtain 	N , p�Ŷ0−�n��N+1, p
= ỹN,p

0 �n�, where is given
by Eq. �47�.
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